Efficient nematode swimming in a shear thinning colloidal suspension.

نویسندگان

  • Jin-Sung Park
  • Daeyeon Kim
  • Jennifer H Shin
  • David A Weitz
چکیده

The swimming behavior of a nematode Caenorhabditis elegans (C. elegans) is investigated in a non-Newtonian shear thinning colloidal suspension. At the onset value (ϕ∼ 8%), the suspension begins to exhibit shear thinning behavior, and the average swimming speed of worms jumps by approximately 12% more than that measured in a Newtonian solution exhibiting no shear dependent viscosity. In the shear thinning regime, we observe a gradual yet significant improvement in swimming efficiency with an increase in ϕ while the swimming speed remains nearly constant. We postulate that this enhanced swimming can be explained by the temporal change in the stroke form of the nematode that is uniquely observed in a shear thinning colloidal suspension: the nematode features a fast and large stroke in its head to overcome the temporally high drag imposed by the viscous medium, whose effective viscosity (ηs) is shown to drop drastically, inversely proportional to the strength of its stroke. Our results suggest new insights into how nematodes efficiently maneuver through the complex fluid environment in their natural habitat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Undulatory swimming in shear-thinning fluids: Experiments with C. elegans

The swimming behaviour of microorganisms can be strongly influenced by the rhe­ ology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undula­ tory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer’s kinematic data (including propulsion speed) and vel...

متن کامل

Microstructure and Rheology Relationships for Shear Thickening Colloidal Dispersions

The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a nonequilibrium microstructure under flow. We present the first experimental measurements of the shear induced microstructure of a concentrated, near hard-sphere colloidal dispersion through the shear thic...

متن کامل

Mean-field microrheology of a very soft colloidal suspension: Inertia induces shear thickening.

Colloidal suspensions have a rich rheology and can exhibit shear thinning as well as shear thickening. Numerical simulations recently suggested that shear-thickening may be attributed to the inertia of the colloids, besides the hydrodynamic interactions between them. Here, we consider the ideal limit of a dense bath of soft colloids following an underdamped Langevin dynamics. We use a mean-fiel...

متن کامل

A structural analysis of concentrated, aggregated colloids under flow

Using both instantaneous snapshots and simulation generated scattering data, the steady-state ̄ ow behaviour of a concentrated aggregated colloidal suspension is analysed in terms of its structure factor S(k). We ® nd that in the shear thinning regime, unlike model hard sphere results, S(k) exhibits pre-peaks at small k, which we interpret as indicative of intermediate range order in the shear i...

متن کامل

Relation between ordering and shear thinning in colloidal suspensions.

Colloidal suspensions exhibit shear thinning and shear thickening. The most common interpretation of these phenomena identifies layering of the fluid perpendicular to the shear gradient as the driver for the observed behavior. However, studies of the particle configurations associated with shear thinning and thickening cast doubt on that conclusion and leave unsettled whether these nonequilibri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2016